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A fully nonlinear dynamical boundary condition on a free surface in viscous turbulent flow is con-
sidered. Conditional averaging with a fixed normal to a free surface in a point revealed simple statistical
structures for the first- and second-order moments of the deformation rate tensor. These structures per-
sist in a free-surface boundary layer. The exact results presented suggest a different direction for experi-
mental and numerical studies of free-surface turbulence.

PACS number(s): 47.27.Ak, 47.27.Gs, 47.27.Nz

Free-surface turbulent flow is one of the most complex
natural phenomenon with many applications. The im-
portant part of the free-surface turbulence is a statistical
influence of the fully nonlinear dynamical boundary con-
dition. For a clean surface (without surfactants, produc-
ing additional stress) this boundary condition on free sur-
face has the form [1]
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Here v is kinematic viscosity, D;; is deformation rate ten-
sor for incompressible flow, V; is velocity field, P is kine-
matic pressure (including gravitational effect), 7 is
surface-tension coefficient, R; and R, are principal radii
of curvature at a given point of the surface, and n; is a
unit normal to the free surface. According to (1), n; is
the eigenvector of D;; and the corresponding eigenvalue
is proportional to the modified pressure P, .

One general method of analyzing nonlinear phenomena
is conditional averaging. This method was applied to the
Navier-Stokes equation, written in terms of a vorticity
field [2—5]. Equation (1) begs for conditional averaging
with fixed n; at a point:
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Here the overbar means conditional averaging and it is
not extended over n; because #; is fixed.

Now consider turbulent flow with a free surface, homo-
geneous and isotropic in the horizontal directions. A
conditionally averaged scalar field, taken at the free sur-
face, will depend only on time (for nonstationary tur-
bulence) and one scalar argument pu=n;z;, where z; is a
unit vertical vector. The parameter u is a measure of the
local steepness of the free surface.

For conditionally averaged tensor fields we have two
distinguished vectors n; and z;. Thus, taking into ac-
count symmetry (2), we have the general expression
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where scalars @,, depend only on time and u, and §;; is
the unit tensor. By using Egs. (4), we express a, a3, and
a, in terms of a, and, after simple algebra, get

Dy=aQ2n;n;+y;y; —8;)+b(2y;y;+nn;—8;) , (6)
_ ET e _ 2
yi_(T—_;j,.z)l—/z ’ b—%(l—/.t )az—%a . (7

Here, instead of z;, we introduce the unit vector y;, which
is normal to n; and belongs to the vertical plane, defined
by vectors (z,n). From (6) and (7) we see that y; is a
different eigenvector of D, ; with b as an eigenvalue:

D;y;=by; . (8)

Now we can introduce the third unit eigenvector normal
to n; and y;:

S =€ NYy )]

where €, is a unit antisymmetric tensor. Incompressibil-
ity (4) requires that the third eigenvalue is —(a +b).
Taking into account the identity

nn;+yy;tss;=8; , (10)

Eq. (6) can be written in a canonical form

D,
Equations (6) and (11) represent a statistical structure
on the turbulent free surface, revealed by conditional
averaging. The deformation rate tensor generally has five
independent components, which are random functions of
coordinates and time and so are eigenvectors. After con-
ditional averaging, the eigenvectors are fixed and the
description of 5,-]- reduces to two scalars, which for sta-
tistically stationary turbulence depend only on one scalar
argument u. The next step is to determine these two
functions, which may parametrically depend also on Rey-
nolds and Froude numbers. This principally can be done
by optical measurements (with tracers and colored
reflections [6]) and by direct numerical simulations (see,
for example, the recent work [7]). On the other hand, the
structure (6) and (11), being an exact result, can serve as a
control of measurements and numerical experiments.
We can expect that this structure will only slowly
change when we move from the free surface down a dis-

=an;n;+by;y;—(a +b)s;s; . (11)
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tance of the order of the Kolmogorov internal scale
1,=v*%€"1/% (€ is the mean dissipation rate of energy).
In fact, at a point at a depth d from the level of the equi-
librium free surface we have the same general formula (5)
for the conditionally averaged deformation rate tensor
with fixed n in the corresponding point on the free sur-
face (on the same vertical). Scalars a,, will depend addi-
tionally on d /1,.. Let us stress that in conditional averag-
ing we fix only the direction n. It is conceivable in the fu-
ture to fix also the local curvature of the free surface,
which would yield another relevant length scale in addi-
tion to /,. The incompressibility condition (4) reduces
the number of independent scalars to 3. With the in-
crease of d, the eigenvector s; apparently remains the
same, but two other eigenvectors may rotate in the plane
(z,n).

Asymptotically, when the dependence of n is weak, the
tensor becomes axisymmetric:

Here A is an eigenvalue in the vertical direction; the ei-
genvalue in any horizontal direction is —A /2. Let us
note that an unconditionally averaged traceless tensor
has the form (12) on any level d because turbulence is ax-
isymmetric. However, for the first-order moment of Dy,
the unconditional averaging gives zero. Indeed, by
averaging (12) over n we have

(D;)=1(A)(3zz;—8;) ,
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Here ( ) means unconditional averaging, x, is one of the
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horizontal coordinates, and we used horizontal homo-
geneity. Having in mind that the conditional averaging
with a weak n dependence is close to unconditional
averaging, we can expect that the axisymmetric regime is
more pronounced for moments of D;; with nonzero un-
conditional averages.

Let us consider a second-order moment, which is
relevant to the dissipation of the Reynolds stress tensor.
Multiplication of (1) by D;; and conditional averaging
gives
(2v?4A=P7 . (13)

D;;Dyn;= An, , *
Using a representation of the form (5) and (13), we get a
formula similar to (11):

Dk,-Dij=Anknj+Bykyj+Csksj . (14)

The difference is that the trace of (14) is positive,
representing the conditionally averaged rate of the energy
dissipation. The structure (14) with the rotation of two
eigenvectors (see above) will again persist in the turbulent
free-surface boundary layer.

We hope that the approach to the problem of free-
surface turbulence presented herein will stimulate corre-
sponding experimental and numerical studies.
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